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Abstract. We propose an extension to epistemic ATL with perfect re-
call, past, and distributed knowledge by strategy contexts and demon-
strate the strong completeness of a Hilbert-style proof system for its
(.U.)-free subset.

Introduction

Alternating time temporal logic (ATL, [2,3]) was introduced as a reasoning tool
for the analysis of strategic abilities of coalitions in extensive multiplayer games
with temporal winning conditions. Systems of ATL in the literature vary on their
restrictions on the players’ information on the game state, which may be either
complete or incomplete (imperfect), and the players’ ability to keep full record of
the past, which is known as perfect recall [11,17].

The informal reading of the basic game-theoretic (cooperation) construct
〈〈Γ 〉〉ϕ of ATL is the members of coalition Γ can cooperate to enforce tempo-
ral condition ϕ regardless of the actions of the rest of the players. Every player
is either committed to the objective ϕ, or free to obstruct it. This restiction
is overcome in Strategy Logic (SL, [6]), where propositional LTL language is
combined with a predicate language interpreted over a domain of strategies to
enable flexible quantification over strategies. LTL formulas are evaluated at the
unique paths which are determined by dedicated parameter lists of strategies.
For instance, assuming just two players 1 and 2, 〈〈1〉〉(pUq) translates into the
SL formula ∃x∀y(pUq)(x, y), where (x, y) indicates evaluating (pUq) at the path
determined by 1 and 2 following strategies x and y, respectively. This transla-
tion is not invertible in general and ATL is not expressively complete wrt SL.
Some practically interesting properties which cannot be written in ATL for this
reason are given in [5]. To enable the expression of such properties, ATL was
extended by strategy contexts in various ways [20,5,15,21]. Strategy contexts are
assignments of strategies to some of the players which the rest of the players
can safely assume to be followed. All of the works [20,15,21] are about strat-
egy contexts in ATL with complete information. To facilitate reasoning about
games with incomplete information, ATL was extended with epistemic opera-
tors [18,11]. Such combinations can be viewed as extending temporal logics of
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knowledge (cf. e.g [7]) in the way ATL extends computational tree logic CTL.
A study of the system of epistemic linear- and branching-time temporal logics
(without the game-theoretic modalities) which arise from the various possible
choices can be found in [19,10].

In this work we embark on the study of an extension of epistemic ATL with
perfect recall and past by strategy contexts. Our extension to the language of
ATL is different from those in [15,21] but brings the same expressive power for
the case of complete information. The language extension we chose has facilitated
upgrading our axiomatic system for epistemic ATL with perfect recall from [9] to
include strategy contexts by making only the obvious changes. Following [9], the
semantics in this paper is based on the variant from [13,14] of interpreted systems,
which are known from the study of knowledge-based programs [7]. The main
result in the paper is the completeness of our proof system for the ”basic” subset
of epistemic ATL with past, perfect recall and strategy contexts. This subset
excludes the iterative constructs 〈〈Γ 〉〉(.U.), 〈〈Γ 〉〉� and 〈〈Γ 〉〉�, but includes the
past operators� and (.S.), and following [9] again, the operator DΓ of distributed
knowledge. The future subset of the system can be viewed as an extension of
Coalition Logic [16] as well. The system is compact. This enabled us to prove
strong completeness, i.e., that an arbitrary consistent set of formulas is also
satisfiable. The proof system includes axioms for temporal logic (cf. e.g. [12]),
epistemic modal logic with distributed knowledge (cf. e.g. [7]), appropriately
revised ATL-specific axioms and rules from the axiomatization of ATL with
complete information in [8] and from the extension of ATL by strategy contexts
proposed in [20], and some axioms from our previous work [9].

Structure of the Paper. After preliminaries on interpreted systems we in-
troduce our logic. We briefly review the related logics from [20,15,21] and give
a satisfaction preserving translation between our proposed logic and that from
[15]. In the subsequent sections we present our proof system for the basic subset
of the logic and demonstrate its completeness.

1 Preliminaries

In this paper we define ATLDPCiR on interpreted systems. An interpreted system is
defined with respect to some given finite set Σ = {1, . . . , N} of players, and a set
of propositional variables (atomic propositions) AP . There is also an environment
e �∈ Σ. In the sequel we write Σe for Σ ∪ {e}.
Definition 1 (interpreted systems). An interpreted system for Σ and AP
is a tuple of the form 〈〈Li : i ∈ Σe〉, I, 〈Act i : i ∈ Σe〉, t, V 〉 where:
Li, i ∈ Σe, are nonempty sets of local states; LΓ stands for

∏

i∈Γ
Li, Γ ⊆ Σe;

I ⊆ LΣe is a nonempty set of initial global states;
Act i, i ∈ Σe, are nonempty sets of actions; ActΓ stands for

∏

i∈Γ
Act i;

t : LΣe ×ActΣe → LΣe is a transition function;
V ⊆ LΣe ×AP is a valuation of the atomic propositions.



Epistemic ATL with Perfect Recall, Past and Strategy Contexts 79

The elements of LΣe are called global states. For every i ∈ Σe and l′, l′′ ∈ LΣe

such that l′i = l′′i and l′e = l′′e the function t is required to satisfy (t(l′, a))i =
(t(l′′, a))i.

In the literature, interpreted systems also have a protocol Pi : Li → P(Act i) for
every i ∈ Σe. Pi(l) is the set of actions which are available to i at local state
l. We assume the same sets of actions to be available to agents at all states for
the sake of simplicity. For the rest of the paper in our working definitions we
assume the considered interpreted system IS to be clear from the context and
its components to be named as above.

Definition 2 (global runs). Given an n ≤ ω, r = l0a0l1a1 . . . ∈ LΣe

(ActΣeLΣe)
n is a run of length |r| = n, if l0 ∈ I and lj+1 = t(lj , aj) for

all j < n. We denote the set of all runs of length n by Rn(IS). We denote⋃

k<n

Rk(IS) and
⋃

k≤n
Rn(IS) by R<n(IS) and R≤n(IS), respectively. We write

Rfin(IS) and R(IS) for R<ω(IS) and R≤ω(IS), respectively.
Given m, k < ω such that m ≤ k ≤ |r|, we write r[m..k] for lmam . . . ak−1lk.

We write R[m..k] for {r[m..k] : r ∈ R} in case the lengths of the runs in R ⊂
R(IS) are at least k.

Runs of length n < ω are indeed sequences of 2n+ 1 states and actions.

Definition 3 (local states, local runs and indiscernibility of runs). Given
an l ∈ L and Γ ⊆ Σe, we write lΓ for 〈li : i ∈ Γ 〉; aΓ ∈ ActΓ is defined similarly
for a ∈ ActΣe, and indeed for a ∈ ActΔ with arbitrary Δ such that Γ ⊆ Δ ⊆ Σe.
Sometimes we write lΓ (aΓ ) just in order to emphasize that the index set of l
(a) is Γ . Given r = l0a0 . . . ∈ R(IS), we write rΓ = l0Γa

0
Γ . . . for the correspond-

ing local run of Γ . Given r′, r′′ ∈ R(IS) and n ≤ |r′|, |r′′|, we write r′ ∼nΓ r′′ if
r′Γ [0..n] = r′′Γ [0..n] and r

′ ∼Γ r′′ for the conjunction of r′ ∼|r′|
Γ r′′ and |r′| = |r′′|.

Obviously ∼nΓ and ∼Γ are equivalence relations on R(IS). We denote {r′ ∈
R(IS) : r′ ∼Γ r} by [r]Γ . Sequences of the form r∅ consist of 〈〉s and [r]∅ is the
class of all runs of length |r|.
Definition 4 (joins of vectors of actions). Given two vectors ai = 〈ai,j :
j ∈ Γi〉, i = 1, 2, such that Γ1, Γ2 ⊆ Σe and Γ1 ∩ Γ2 = ∅, we write a1 ∪ a2 for
the vector indexed by Γ1 ∪ Γ2 with action (a1 ∪ a2)j being either a1,j or a2,j,
depending on whether j ∈ Γ1 or j ∈ Γ2.

Definition 5 (strategies and outcomes). A strategy for i ∈ Σe is a function
of type {ri : r ∈ Rfin(IS)} → Act i. We write S(Γ ) for the set of the vectors
of strategies with one strategy for every member of Γ in them. We apply the
notation introduced for vectors of actions in Definitions 3 and 4 to vectors of
strategies as well. Given s ∈ S(Γ ) and r ∈ Rfin(IS), we write out(r, s) for the
set

{r′ = l0a0 . . . ∈ Rω(IS) : r′[0..|r|] = r, aji = si(r{i}[0..j]) for all i ∈ Γ, j ≥ |r|}
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of the possible outcomes of r when Γ follow s from time |r| on. Given an X ⊂
Rfin(IS), we write out(X, s) for

⋃

r∈X
out(r, s).

Definition 6 (indiscernibility of strategy vector sequences). Given s′,
s′′ ∈ S(Σe), we write s′ ∼Γ s′′ if s′Γ = s′′Γ . Given two sequences s′ = s′0 . . . s′n,
s′′ = s′′0 . . . s′′n ∈ (S(Σe))

n+1, we write s′ ∼Γ s′′ if s′k ∼Γ s′′k for k = 0, . . . , n.

Definition 7 (strategy revision). Given Γ ⊆ Σe, s
′, s′′ ∈ S(Γ ), and an n <

ω, we write s′�ns′′ for the vector of strategies which is defined by the case
distinction:

(s′�ns′′)i(r) =
{
s′i(r{i}), if |r| < n;
s′′i (r{i}), if |r| ≥ n.

Definition 8 (consistency of strategy vector sequences). A sequence s =
s0, . . . , sn ∈ S(Σe)n+1 is consistent, if sk(r) = sk+1(r) for all r ∈ R<k(IS) and
all k < n.

In words, s is consistent, if, for k > 0, sk+1 returns the same vectors of actions
as sk for runs of length up to k − 1. The reason to require sk−1(r) = sk(r) only
if |r| ≤ k − 1 is that, according to the definition of |= in ATLDPCiR below, for
|r| ≥ k, the values of sk(r) represent the context strategies to be followed from
step k on and these strategies are subject to revision.

2 Epistemic ATL with Perfect Recall, Past and Strategy
Contexts (ATLDPC

iR )

ATLDPCiR has an additional parameter Δ to its game-theoretic operator to des-
ignate the set of the players whose behaviour is assumed to be as described in
the strategy context. As it becomes clear below, having a cooperation modality
with such a parameter facilitates the use of appropriate variants of the axioms
and rules for ATLDPiR from [9]. In Section 3 we explain that this form of the co-
operation modality has the same expressive power as (an appropriately defined
incomplete-information variant of) the cooperation modalities from [15].

Definition 9 (syntax). Here follows a BNF for the syntax of formulas in

ATLDPCiR and the intended informal reading of the connectives:

ϕ, ψ ::= ⊥ | p | (ϕ⇒ ψ) | logical falsehood, atomic proposition, implication
�ϕ | ϕ one step ago
(ϕSψ) | ψ either now, or some time ago

and ϕ has been true ever since ψ held last;
DΓϕ | Γ know ϕ;
〈〈Γ | Δ〉〉 ◦ ϕ | Γ can enforce ϕ in one step, provided that

Δ follow their current strategies;
〈〈Γ | Δ〉〉(ϕUψ) | Γ can enforce reaching a ψ-state along a path of ϕ-states,

provided that Δ follow their current strategies;
[[Γ | Δ]](ϕUψ) | Γ cannot prevent reaching a ψ-state along a path of

ϕ-states, unless Δ give up their current strategies.



Epistemic ATL with Perfect Recall, Past and Strategy Contexts 81

〈〈Γ | Δ〉〉 and [[Γ | Δ]] are well-formed only if Γ ∩Δ = ∅. We write Var(ϕ) for
the set of the atomic propositions which occur in ϕ.

Note that we do not introduce dedicated notation for individual knowledge.
Below it becomes clear that Ki can be written as D{i}.

Definition 10 (modelling relation of ATLDPCiR ). The relation IS, s, r |= ϕ is
defined for r ∈ Rfin(IS), a consistent strategy vector sequence s = s0, . . . , s|r| ∈
S(Σe)

|r|+1, and formulas ϕ, by the clauses:

IS, s, r �|= ⊥;

IS, s, l0a0 . . . an−1ln |= p iff V (ln, p) for atomic propositions p;

IS, s, r |= ϕ⇒ ψ iff either IS, s, r �|= ϕ or IS, s, r |= ψ;

IS, s, r |= DΓϕ iff (∀r′ ∈ [r]Γ )(s
′ ∈ S(Σe))(s

′ ∼Γ s implies IS, s′, r′ |= ϕ);

IS, s, r |= 〈〈Γ | Δ〉〉θ iff

(∃s′ ∈ S(Γ ))(∀s′′ ∈ S(Σe \ (Γ ∪Δ)))(∀s′′′ ∈ S(Σe)
|r|)(∀r′ ∈ out([r]Γ∪Δ, s′ ∪ s|r|Δ ))

(s′′′ ∼Γ∪Δ s implies IS, s′′′ · (s′′′|r|�|r|(s′ ∪ s|r|Δ ∪ s′′)), r′, |r| |= θ);

IS, s, r |= [[Γ | Δ]]θ iff IS, s, r �|= 〈〈Γ | Δ〉〉¬θ;
IS, s, r |= �ϕ iff |r| > 0 and IS, s[0..|r| − 1], r[0..|r| − 1] |= ϕ;

IS, s, r |= (ϕSψ) iff (∃k ≤ |r|)
(
IS, s[0..n− k], r[0..n− k] |= ψ and
(∀u < k)IS, s[0..n− u], r[0..n− u] |= ϕ

)
.

In the clauses for 〈〈Γ | Δ〉〉θ and [[Γ | Δ]]θ above, θ stands for a possibly negated
◦ϕ or (ϕUψ). We use an auxiliary form of |= to define the satisfaction of θ,
which, being an LTL formula, takes an infinite run and a position in it to inter-
pret. Given an r ∈ Rω(IS) and a k < ω,

IS, s, r, k |= ◦ϕ iff IS, s, r[0..k + 1] |= ϕ;

IS, s, r, k |= (ϕUψ) iff (∃m)

(
IS, s, r[0..k +m] |= ψ and
(∀n < m)IS, s, r[0..k + n] |= ϕ

)

;

IS, s, r, k |= ¬θ iff IS, s, r, k �|= θ.

Validity of formulas in an entire interpreted system and on the class of all in-
terpreted systems, that is, in the logic ATLDPCiR , is defined as satisfaction at all
0-length runs in the considered interpreted system, and at all the 0-length runs
in all interpreted systems, respectively.

In the definition of |=, we use sequences of strategy vectors and not simply strat-
egy vectors as the strategy context, in order to enable the interpretation of the
past operators � and (.S.). This complication of the form of |= is inevitable be-
cause the interpretation of 〈〈Γ | Δ〉〉◦ allows the strategy context to be revised,
and it is necessary to be able to revert to contexts from before such revisions
for the correct interpretation of the past operators. The semantics of the fu-
ture subset of ATLDPCiR can be defined with s being just a vector of strategies in
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|=. Then the satisfaction condition for IS, s, r |= 〈〈Γ | Δ〉〉θ can be given the
following simpler form:

(∃s′ ∈ S(Γ ))(∀s′′ ∈ S(Σe \ (Γ ∪Δ)))(∀s′′′ ∈ S(Σe))(∀r′ ∈ out([r]Γ∪Δ, s′ ∪ sΔ))
(s′′′ ∼Γ∪Δ s implies IS, s′′′�|r|(s′ ∪ sΔ ∪ s′′), r′, |r| |= θ)

Abbreviations. �, ¬, ∨, ∧ and⇔ are used to abbreviate formulas written with
⊥ and ⇒ in the common way. The abbreviations below are specific to ATL and
other temporal and epistemic logics:

I � ¬��
�−ϕ� (�Sϕ)

�ϕ� ¬�−¬ϕ
PΓϕ� ¬DΓ¬ϕ

[[Γ | Δ]] ◦ ϕ� ¬〈〈Γ | Δ〉〉 ◦ ¬ϕ.

3 Related Work

Next we give a brief account of the systems ATLsc, BSIL and ATLES from
[15,21,20], respectively. An extension of ATL∗ by strategy contexts can be found
in [1] too, where the authors focus mainly on modelling issues, and not tech-
nical results. We show that ATLsc from [15] admits a satisfaction preserving
translation into ATLDPCiR . ATLsc , BSIL and ATLES were originally introduced
for alternating transition systems and concurrent game structures. To assert the
semantical compatibility with ATLDPCiR and, for the sake of brevity, we spell
out their semantics on interpreted systems. Unlike ATLDPCiR , all these systems
have complete information semantics. However, complete information can be
straightforwardly modelled in interpreted systems by assigning the same local
state space L1 = . . . = LN = Le to each i ∈ Σe and restricting the reachable
states to be in the diagonal of L1 × . . .× LN × Le.

ATL with strategy contexts (ATLsc, [15]) has state formulas ϕ and path
formulas ψ. Their syntax can be given by the BNFs

ϕ ::= ⊥ | p | (ϕ⇒ ϕ) | 〈·Γ ·〉ψ | ·〉Γ 〈·ϕ and ψ ::= ¬ψ | ◦ϕ | (ϕUϕ)
Satisfaction has the form IS, ρ, r |= ϕ with r ∈ Rfin(IS) for state formulas and
IS, ρ, r |= ψ with r ∈ Rω(IS) for path formulas. In both cases Δ ⊆ Σ and
ρ ∈ S(Δ). The clauses about |= for the ATLsc-specific operators are as follows:

IS, ρ, r |= 〈·Γ ·〉ψ iff (∃s ∈ S(Γ ))(∀r′ ∈ out(r, ρdomρ\Γ ∪ s))IS, ρdomρ\Γ ∪ s, r′ |= ϕ;

IS, ρ, r |= ·〉Γ 〈·ϕ iff IS, ρdomρ\Γ , r |= ϕ.

Thanks to the presence of strategy contexts and the possibility to combine 〈·.·〉
with ¬ in ATLsc , ATLsc and ATL∗

sc , where path formulas can have arbitrary
combinations of boolean connectives, have the same expressive power.

The translation tΔ below, maps from ATLsc state formulas to ATLDPCiR for-
mulas. The auxiliary parameter Δ ⊆ Σ is the domain of the reference context.
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For the sake of brevity (·.·) stands for either [·.·] or 〈·.·〉 in the translation clauses.
The meaning of ((.)) is similar, wrt 〈〈.|.〉〉.

tΔ(⊥) � ⊥, tΔ(p) � p, tΔ(ϕ1 ⇒ ϕ2) � tΔ(ϕ1)⇒ tΔ(ϕ2)
tΔ(〈·Γ ·〉¬ψ) � ¬tΔ([·Γ ·]ψ), tΔ([·Γ ·]¬ψ) � ¬tΔ(〈·Γ ·〉ψ)
tΔ((·Γ ·) ◦ ϕ) � ((Γ | Δ \ Γ )) ◦ tΓ∪Δ(ϕ)
tΔ((·Γ ·)(ϕ1Uϕ2)) � ((Γ | Δ \ Γ ))(tΓ∪Δ(ϕ1)UtΓ∪Δ(ϕ2))
tΔ(·〉Γ 〈·ϕ | Δ) � tΔ\Γ (ϕ)

An induction on the construction of formulas shows that, for any ATLsc state
formula ϕ, IS, ρ, r |=ATLsc ϕ is equivalent to IS, s, r |=ATLDPC

iR
tdomρ(ϕ) where s

stands for any sequence of strategy vectors that is consistent with r and features
ρ as the strategy assignment to the members of domρ in its last member. The
translation can be inverted on the future subset of ATLDPCiR :

t−1(〈〈Γ | Δ〉〉ϕ) � ·〉Σ \Δ〈· 〈·Γ ·〉t−1(ϕ).

Basic strategy-interaction logic (BSIL, [21]) language includes state for-
mulas ϕ, path formulas ψ and tree formulas θ:

ϕ ::= ⊥ | p | (ϕ⇒ ϕ) | 〈Γ 〉θ | 〈Γ 〉ψ
θ ::= ⊥ | (θ ⇒ θ) | 〈+Γ 〉θ | 〈+Γ 〉ψ
ψ ::= ◦ϕ | (ϕUϕ) | (ϕWϕ)

The modelling relation has the form IS, ρ, l |= ϕ for state and tree ϕ, and
IS, ρ, r |= ψ for path ψ, where l is a (global) state, r ∈ Rω(IS), and ρ is a
strategic context. The clauses for 〈Γ 〉 and 〈+Γ 〉 with a path argument formula
ψ are as follows:

IS, ρ, l |= 〈Γ 〉ψ iff (∃s ∈ S(Γ ))(∀r ∈ out(l, s))IS, s, r |= ψ;
IS, ρ, l |= 〈+Γ 〉ψ iff (∃s ∈ S(Γ ))(∀r ∈ out(l, ρdomρ\Γ ∪ s))IS, ρdomρ\Γ ∪ s, r |= ψ

The clauses for tree argument formulas are similar. BSIL admits a translation
into an appropriate ∗-extension of ATLDPCiR .

ATL with explicit strategies (ATLES , [20]) extends the syntax of 〈〈.〉〉 by
subscripting it with mappings ρ of subsets of Σ to finite syntactical descriptions
of strategies called strategy terms. In our notation, ρ denote elements of S(domρ)
and the clause about |= for 〈〈Γ 〉〉ρ◦ is:

IS, r |= 〈〈Γ 〉〉ρ ◦ϕ iff (∃s ∈ S(Γ \domρ))(∀r′ ∈ out(r, s∪ρ))IS, r′[0..|r|+1] |= ϕ.

The clauses for 〈〈Γ 〉〉ρ(ϕUψ) and 〈〈Γ 〉〉ρ�ϕ follow the same pattern. Unlike ATLsc ,

BSIL and ATLDPCiR , an ATLES formula may have several (freely occurring) fixed
strategy context terms for each player. There appears to be no obvious way to
reconcile this with the semantics of the other systems.
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4 A Proof System for Basic ATLDPC
iR

Basic ATLDPCiR is the subset of ATLDPCiR without 〈〈. | .〉〉(.U.) and [[. | .]](.U.):

ϕ, ψ ::= ⊥ | p | (ϕ⇒ ψ) | �ϕ | (ϕSψ) | DΓϕ | 〈〈Γ | Δ〉〉 ◦ ϕ

Along with all propositional tautologies and the rule Modus Ponens (MP ), our
system includes the following axioms and rules:

The epistemic operator D.

(KD) DΓ (ϕ ⇒ ψ) ⇒ (DΓϕ ⇒ DΓψ) (TD) DΓψ ⇒ ψ

(4D) DΓψ ⇒ DΓDΓψ (5D) ¬DΓψ ⇒ DΓ¬DΓψ
(MonoD) DΓψ ⇒ DΓ∪Δψ (ND)

ϕ

DΓϕ

(INTD)
(DΓ\Δ(p⇒ ϕ) ∧ DΔ(¬p⇒ ϕ)) ⇒ ψ

DΓ∪Δϕ ⇒ ψ

The past modalities � and (.S.)

(K�) �(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ) (�⊥) ¬�⊥
(FP(.S.)) (ϕSψ) ⇔ ψ ∨ (ϕ ∧ �(ϕSψ)) (Fun�) �¬ϕ ⇒ ¬�ϕ

(Mono�)
ϕ ⇒ ψ

�ϕ ⇒ �ψ (N�)
ϕ

�ϕ
General ATL axioms and rules

(〈〈. | .〉〉 ◦ ⊥) ¬〈〈Γ | Δ〉〉 ◦ ⊥
(〈〈. | .〉〉 ◦ �) 〈〈Γ | Δ〉〉 ◦ �
(S) 〈〈Γ ′ \ Γ ′′ | Δ′〉〉 ◦ ϕ ∧ 〈〈Γ ′′ | Δ′′〉〉 ◦ ψ ⇒ 〈〈Γ ′ ∪ Γ ′′ | Δ′ ∪Δ′′〉〉 ◦ (ϕ ∧ ψ)

(INT 〈〈.|.〉〉◦)
〈〈Γ ′ \ Γ ′′ | Δ′〉〉 ◦ (p⇒ ϕ) ∧ 〈〈Γ ′′ | Δ′′〉〉 ◦ (¬p⇒ ϕ) ⇒ ψ

〈〈Γ ′ ∪ Γ ′′ | Δ′ ∪Δ′′〉〉 ◦ ϕ⇒ ψ

(Mono〈〈.|.〉〉◦)
ϕ ⇒ ψ

〈〈Γ | Δ〉〉 ◦ ϕ ⇒ 〈〈Γ | Δ〉〉 ◦ ψ
Committed versus neutral players (See Lemma 1 from [20].)

(WHW ) 〈〈Γ | Ψ ∪Δ〉〉 ◦ ϕ ⇒ 〈〈Γ ∪ Ψ | Δ〉〉 ◦ ϕ
Interactions between �, (.S.), 〈〈. | .〉〉◦ and D.

(D◦) 〈〈Γ | Δ〉〉 ◦ ϕ⇔ DΓ∪Δ〈〈Γ | Δ〉〉 ◦ ϕ
〈〈Γ | Δ〉〉 ◦ ϕ⇔ 〈〈Γ | Δ〉〉 ◦ DΓ∪Δϕ

(PR) �DΓϕ⇒ DΓ�ϕ
(〈〈. | .〉〉 ◦ �) 〈〈Γ | Δ〉〉 ◦ (�ϕ ∧ ψ)⇔ DΓ∪Δϕ ∧ 〈〈Γ | Δ〉〉 ◦ ψ

�〈〈∅ | Δ〉〉 ◦ ϕ⇒ 〈〈∅ | Δ〉〉 ◦ �ϕ
(DI) DΓ I ∨ DΓ¬I
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The rules INT 〈〈.|.〉〉◦ and INTD require p �∈ Var(ϕ)∪Var(ψ). Note that instances
of S are well-formed only if (Γ ′ ∪ Γ ′′) ∩ (Δ′ ∪Δ′′) = ∅.

5 Completeness of the Proof System

We fix the vocabulary AP for the rest of this section and denote the set of all the
basic ATLDPCiR formulas built using variables from AP by L. We write Φ �MP ϕ
for the derivability of ϕ from the premises Φ, the theorems of ATLDPCiR andMP
as the only proof rule.

Auxiliary Propositional Variables and Formulas. Given Γ ⊆ Σ and i ∈ Σ,
we write Γ<i for the set Γ ∩ {1, . . . , i − 1}. Given the formulas DΓψ and 〈〈Γ |
Δ〉〉◦ψ, we introduce the auxiliary variables qi,DΓψ, i ∈ Γ<maxΓ , and qi,〈〈Γ |Δ〉〉◦ψ,
i ∈ (Γ ∪Δ)<max(Γ∪Δ) and use them to construct the formulas

pi,DΓψ � qi,DΓ ψ ∧
∧

j∈Γ<i

¬qj,DΓ ψ, i ∈ Γ<maxΓ , and pmaxΓ,DΓψ �
∧

j∈Γ<maxΓ

¬qj,DΓψ.

Obviously these formulas satisfy � ∨

i∈Γ
pi,DΓψ and � ¬(pi,DΓψ ∧ pj,DΓψ) for i �= j.

We put pmaxΓ,DΓψ � � in case |Γ ∪ Δ| = 1. We use pi,DΓψ to construct the
formulas

Di,Γψ � Di(pi,DΓψ ⇒ ψ), i ∈ Γ.
The formulas pi,〈〈Γ |Δ〉〉◦ψ, i ∈ Γ∪Δ, are written similarly in terms of the variables

qi,〈〈Γ |Δ〉〉◦ψ, i ∈ (Γ ∪Δ)<max(Γ∪Δ). We use pi,〈〈Γ |Δ〉〉◦ψ to construct the formulas

〈〈i, Γ | Δ〉〉 ◦ ψ �
{ 〈〈i | ∅〉〉 ◦ (pi,〈〈Γ |Δ〉〉◦ψ ⇒ ψ), for i ∈ Γ ;
〈〈∅ | i〉〉 ◦ (pi,〈〈Γ |Δ〉〉◦ψ ⇒ ψ), for i ∈ Δ.

Given a set of formulas x written in AP , we write x for the set

x ∪ {Di,Γψ : i ∈ Γ,DΓψ ∈ x} ∪ {〈〈i, Γ | Δ〉〉 ◦ ψ : 〈〈Γ | Δ〉〉 ◦ ψ ∈ x, i ∈ Γ ∪Δ}.
Lemma 1. Let x be a consistent set of formulas written in AP . Then x is
consistent too.

The proof of this lemma is similar to that of Lemma 12 from [9] and involves
the rules INTD and INT 〈〈.|.〉〉◦.

Lemma 2 (customized Lindenbaum lemma). Let ≺ be a well-ordering of
L and let x be a consistent subset of L. Then there exists a consistent set x′ ⊇ x
which is maximal in L and is such that for any initial interval Φ ⊂ L of 〈L,≺〉
the consistency of x ∪ Φ entails Φ ⊆ x′.
Proof. We construct the ascending (transfinite) sequence xϕ, ϕ ∈ L, of consistent
subsets of L indexed by the elements of L by induction on the well-ordering ≺.
Let ϕ0 be the least element of L. Then xϕ0 is x ∪ {ϕ0} in case x ∪ {ϕ0} is
consistent; otherwise it is just x. Similarly, for all non-limit ϕ, given that ϕ′ is
the successor of ϕ in ≺, xϕ′ is xϕ ∪ {ϕ′} in case xϕ ∪ {ϕ′} is consistent and xϕ
otherwise. For limit ϕ, xϕ =

⋃

ψ≺ϕ
ϕψ. A direct check shows that x′ =

⋃

ϕ∈L

has

the desired property.
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In the sequel, given x and a well-ordering a of L, we denote a fixed maximal
consistent set (MCS) with the above property by x+ a.

Next we build a interpreted system IS = 〈〈Li : i ∈ Σe〉, I, 〈Act i ∈ Σe〉, t, V 〉
for basic ATLDPCiR which is canonical in the sense adopted in modal logic.

Definition 11 (global states, local states). Let W to be the set of all the
maximal consistent sets of formulas in the vocabulary AP . Given w ∈ W and
Γ ⊆ Σ, we put

DΓ (w) = {ϕ : DΓϕ ∈ w}, Li = {D{i}(w) : w ∈W} for i ∈ Σ, and Le =W.

Given w ∈ W , we write lw for the state 〈D{1}(w), . . . , D{N}(w), w〉. Below it
becomes clear that all reachable states in IS have this form. We work with the
MCS w instead of the respective tuples lw wherever this is more convenient.
Note that the environment component of lw is w itself.

Definition 12 (valuation and initial states). We put V (w, p)↔ p ∈ w and
I = {lw : w ∈W, I ∈ w}.

Definition 13 (indiscernibility of states in terms of MCS). Given Γ ⊆
Σe, two states w, v ∈W are Γ -similar, written w ∼Γ v, if DΓ (w) = DΓ (v).

The following lemma shows that w ∼Γ v is equivalent to lw ∼Γ lv in the sense
of Definition 3.

Lemma 3 (Γ -similarity in terms of Γ ’s distributed knowledge). Let
w, v ∈W , Γ ⊆ Σ. Then w ∼Γ v iff D{i}(w) = D{i}(v) for all i ∈ Γ .

Proof. (←): Let w ∼Γ v and DΓϕ ∈ DΓ (w). Then Di,Γϕ ∈ w for every i ∈ Γ .
Then, by 4D and MonoD, DΓDi,Γϕ ∈ v for every i ∈ Γ too. Now S5 reasoning
and � ∨

i∈Γ
pi,DΓϕ entail

∧

i∈Γ
Di,Γ ⇒ DΓϕ. Hence DΓϕ ∈ DΓ (v).

(→): Let Diϕ ∈ w. Then, by S5 reasoning, w �MP DΓDiϕ, whence, by DΓ (w) =
DΓ (v), v �MP DΓDiϕ and, finally Diϕ ∈ v. Hence D{i}(w) ⊆ D{i}(v).

The symmetrical inclusions are proved similarly.

Definition 14 (actions). An action for player i ∈ Σ is either the symbol d or
a tuple of the form 〈Φ, Γ,Δ〉 such that Γ,Δ ⊆ Σ are disjoint, i ∈ Γ , and Φ is a
consistent set of formulas. An environment action is a well-ordering of L.

Player action 〈Φ, Γ,Δ〉 is represents the player’s contribution to achieving all
the objectives from Φ simultaneously as a member of Γ , provided that Δ act as
described in the context. Action d indicates choosing to follow the strategy from
the context. Allowing infinite sets Φ of objectives in actions is necessary because
MCS may contain infinitely many formulas of the form 〈〈∅ | Δ〉〉 ◦ ϕ.
Definition 15 (the past of a state). Given a w ∈ W , we write Θw for the
set {�θ : θ ∈ w}.
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The formulas from Θw hold at states which can be reached from lw in one step.
Environment actions complement the construction of successor states. Let x
consist of the formulas to be satisfied due to the player actions performed at
state lw. Then environment action ae comlements x∪Θw to an MCS description
of the successor state (x∪Θw)+ae. Lemma 2 entails that any MCS x′ ⊇ x∪Θw
has the form (x ∪Θw) + ae for some appropriate ae.

Definition 16 (effectiveness of coalitions). Let a ∈ ActΣe and w ∈W . We
write Δa for the set {i ∈ Σ : ai = d}. Coalition Γ ⊆ Σ is effective in a wrt w, if

(1) Γ ⊆ Σ \Δa, Δ ⊆ Δa;
assuming that ai = 〈Φi, Γi, Δi〉, i ∈ Γ ,

(2) Γ = Γi for all i ∈ Γ ;
(3) 〈〈Γi | Δi〉〉 ◦

∧
Φ′ ∈ w for all finite Φ′ ⊆ Φi;

(4) Δi = Δj for all i, j ∈ Γ .
Coalition Γ is effective in state w, iff its objectives are achievable in w. Different
coalitions which are effective in the same state cannot overlap.

Definition 17 (aw). Let the coalitions which are effective in a ∈ ActΣe wrt
w ∈ W be Γ1, . . . , Γk. Let Υ = Γ1 ∪ . . . ∪ Γk. We define aw ∈ ActΣe by the
clause

aw,i =

⎧
⎪⎪⎨

⎪⎪⎩

ae, if i = e;
〈Φi, Γi, Δi〉, if i ∈ Υ ;
〈{ψ : 〈〈∅ | i〉〉 ◦ ψ ∈ w}, {i}, ∅〉, if i ∈ Δa;
〈∅, {i}, ∅〉, otherwise.

The vector of actions aw is a revision of a according to the plausibility of the
actions from a in w. In aw, players i who participate in effective coalitions
are described as acting to achieve the common objective of their coalitions;
players who follow their respective strategies from the context are described as
acting to achieve whatever consequences these actions have according to w, and
players who neither participate in effective coalitions, nor follow the context
strategies, are described as acting in singleton coalitions {i} to achieve nothing.
Consequently, all the coalitions in aw are effective wrt w:

Lemma 4 (effectiveness of coalitions in aw). Assuming the notation from
Definition 17, if i ∈ Σ and aw,i = 〈Φ, Γ,Δ〉, then 〈〈Γ | Δ〉〉 ◦

∧
Φ′ ∈ w for all

finite Φ′ ⊂ Φ.
Proof. The lemma follows immediately for i ∈ Υ and i ∈ Σ \ (Υ ∪Δa). Players
i ∈ Δa appear in the singleton coalitions {i} in aw, and we have 〈〈∅ | i〉〉◦∧Φ′ ∈ w
for all finite Φ′ ⊂ Φ. By Axiom WHW this entails 〈〈i | ∅〉〉 ◦∧Φ′ ∈ w.
As it becomes clear below, a and aw cause the same transitions from w. The no-
tation aw is introduced to avoid lengthy explanations about treating the various
sorts of actions separately.

Definition 18 (transition function). Let w ∈ W , a ∈ ActΣe and aw =

〈〈Φi, Γi, Δi〉 : i ∈ Σ〉 ∪ 〈ae〉. Then t(lw, a) = lv where v =

(
⋃

i∈Σ
Φi ∪Θw

)

+ ae,
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i.e., v is the extension of the set of all the objectives which can be simultaneously
achieved by the coalitions which are effective in a wrt w and the formulas which
describe lw’s past, to an MCS by ae, as in Lemma 2.

The definition of t above relies on the fact that
⋃

i∈Σ
Φi ∪ Θw is consistent. To

realise that, assume the contrary. Then there exist some finite Φ′ ⊆ ⋃

i∈Σ
Φi and

Θ′ ⊂ w such that � ∧
Φ′ ⇒ �¬∧Θ′. By the monotonicity of 〈〈Σ | ∅〉〉◦ and

Axiom 〈〈. | .〉〉 ◦ �, this entails � 〈〈Σ | ∅〉〉 ◦ ∧Φ′ ⇒ DΣ¬
∧
Θ′. By Axioms S

and WHW , � ∧

i∈Σ
〈〈Γi | Δi〉〉 ◦

∧
(Φi ∩ Φ′) ⇒ 〈〈Σ | ∅〉〉 ◦ ∧Φ′. Hence � ∧

i∈Σ
〈〈Γi |

Δi〉〉 ◦
∧
(Φi ∩Φ′)⇒ DΣ¬

∧
Θ′, which is a contradiction because Θ′ ⊂ w and, by

Lemma 4, 〈〈Γi | Δi〉〉 ◦
∧
(Φi ∩Φ′) ∈ w for all i ∈ Σ. We define t only on states of

the form lw. The set of these states contains I and is closed under t. Hence the
definition of t on other states is irrelevant.

Definitions 11, 12, 14 and 18 give a complete description of the interpreted
system IS. Below we prove that if r ∈ Rfin(IS) and s ∈ S(Σe)n+1 is consistent
with s, then, for any ϕ ∈ L, IS, s, r |= ϕ iff ϕ ∈ w where lw is the last state of r.

Definition 19 (extracting strategic context from MCS). Given a w ∈
R0(IS), we define aw ∈ ActΣ by putting aw,i = 〈{ϕ : 〈〈∅|i〉〉 ◦ ϕ ∈ w}, {i}, ∅〉.
We define the vector of strategies sIS ∈ S(Σ) by putting, given an arbitrary
r = w0a0 . . . a|r|−1w|r| ∈ Rfin(IS), sIS(r) = aw|r| .

The strategies sIS are built according to the working of the transition func-
tion along runs in which the players act as described in the context. They are
memoryless, i.e., determined by the last state of the argument run. Note that
we extract strategic context from w, which contains the explicit descriptions
〈〈i, Γ | Δ〉〉 ◦ ψ of the contribution of individual coalition members i ∈ Γ to the
achievement of goals of their respective coalitions Γ . According to our definition,
local runs are sequences of the form

ri = D{i}(w0)a0iD{i}(w1)a1i . . . a
k−1
i D{i}(wk) . . . .

To realise that the strategies sIS,i are determined from the local run of player
i, note that 〈〈∅|{i}〉〉 ◦ ϕ ∈ w is equivalent to 〈〈∅|{i}〉〉 ◦ ϕ ∈ v for v such that
D{i}(v) = D{i}(w) due to the Axioms D◦.

Definition 20 (consistency between runs and strategy vector
sequences). Let n < ω. Run r = w0a0 . . . an−1wn ∈ Rn(IS) and strategy
vector sequence s = s0, . . . , sn ∈ (S(Σe))

n+1 are consistent, if s is consistent (in
the sense of Definition 8) and ak = sn(r[0..k]), k = 0, . . . , n− 1.

Note that the restrictions on sk which follow from the consistency between r and
s for k < n are implied by the consistency of s as a sequence of strategy vectors.

The following lemma states that if w ∈W and DΓ (w) is consistent with some
arbitrary formula ϕ, then indeed DΓ (w) �MP PΓϕ.

Lemma 5. Let Γ ⊆ Σ, w ∈ W , ϕ ∈ L and let w be consistent with ϕ. Then
DΓ (w) �MP PΓϕ.
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Proof. Since w is maximal consistent, either PΓϕ ∈ w or DΓ¬ϕ ∈ w. The latter
is impossible as it would entail DΓ (w) �MP ¬ϕ. By S5 reasoning, PΓϕ ∈ w
entails DΓPΓϕ ∈ w. The latter formula appears in DΓ (w) as well. Hence, by S5
reasoning again, DΓ (w) �MP PΓϕ.

Lemma 6. Let w, v ∈ W , Γ ⊆ Σ and DΓ (w) ⊆ DΓ (v). Then DΓ (w) = DΓ (v).

Proof. Let ϕ ∈ L be such that DΓϕ �∈ w. Then DΓPΓ¬ϕ ∈ w by Lemma 5 and
S5 reasoning. By DΓ (w) ⊆ DΓ (v), this entails PΓ¬ϕ ∈ v. Hence DΓϕ �∈ v.

The following lemmata are the parts of the inductive proof of the Truth Lemma
below (Theorem 1) about the various ATLDPCiR modalities.

Lemma 7 (PΓ ). Let n < ω, r = w0a0 . . . an−1wn ∈ Rn(IS), let s = s0, . . . , sn ∈
(S(Σe))

n+1 be consistent with r. Let Φ be a set of formulas such that PΓ
∧
Φ′ ∈

wn for all finite Φ′ ⊆ Φ. Then there exist an r′ = v0b0 . . . bn−1vn ∈ Rfin(IS)
and a sequence s′ = s′0, . . . , s′n ∈ (S(Σe))

n+1 such that s′ is consistent with r′,
r′ ∼Γ r, s′ ∼Γ s, and Φ ⊆ vn.

Proof. Induction on n. If r ∈ R0(IS), then I ∈ w0 and, by S5 reasoning and
DI, PΓ (I ∧

∧
Φ′) ∈ w0 for all finite Φ′ ⊆ Φ. By S5 reasoning this entails that

Φ ∪ {I} ∪ {DΓψ : DΓψ ∈ w0} is consistent. Now Lemma 6 entails that we can
choose v0 to be any MCS which contains the latter set and put s′0 = sIS .

Next we prove the lemma for |r| = n+1 assuming that it holds for |r| = n. Let
Θ = {θ : DΓ (w

n+1) ∪ Φ �MP �θ}. Assume that DΓ (w
n) ∪Θ is inconsistent for

the sake of contradiction. Then there exist some finite D′ ⊂ DΓ (w
n) and Θ′ ⊂ Θ

such that � DΓ�
∧
D′ ⇒ �¬∧Θ′. By Axiom PR, DΓ�

∧
D′ ∈ DΓ (w

n+1).
Hence ¬∧Θ′ ∈ Θ, which entails that DΓ (w

n+1)∪Φ is inconsistent. This means
that there exists a finite Φ′ ⊆ Φ such that DΓ (w

n+1) �MP DΓ¬
∧
Φ′, which is

a contradiction. Hence DΓ (w
n) ∪ Θ is consistent, and consequently, because of

the closedness of Θ under conjunction, {PΓ
∧
Θ′ : Θ′ ⊂fin Θ} ⊂ wn.

By the inductive hypothesis, there exist an r′′ = v0b0 . . . bn−1vn ∈ Rfin(IS)
and a sequence s′′ = s′′0, . . . , s′′n ∈ (S(Σe))

n+1 such that s′′ is consistent with
r′′, r′′ ∼Γ r[0..n], s′′ ∼Γ s[0..n], and Θ ⊆ vn. Next we define s′ns′n+1 ∈ S(Σe)
so that s′ = s′′[0..n−1] ·s′n, s′n+1 is consistent with r′ = r′′ bn vn+1 ∈ Rn+1(IS)
where bn = s′n(r′′), vn+1 = t(vn, bn), s′ ∼Γ s, DΓ (v

n+1) = DΓ (w
n+1) and

Φ ⊆ vn+1. Given g ∈ Rfin(IS), we put

s′i
n(g) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s′i
n−1(g), if |g| < n, for all i ∈ Σe,

sni (g) if |g| = n, and i ∈ Γ,
〈i, ∅, {i}, ∅〉 if |g| = n, and i ∈ Σ \ Γ,
any well-ordering of L in which
DΓ (w

n+1) ∪ Φ forms an initial interval, if |g| = n, and i = e,
sIS,i(g), if |g| ≥ n.

For s′n+1 we put s′n+1(g) =

{
s′′n(g), if |g| < n+ 1,
sIS(g), if |g| ≥ n+ 1.
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By construction, s′ is consistent (as a sequence of strategy vectors), s′ ∼Γ s,
and s′ is consistent with r′′. We need to prove that DΓ (v

n+1) = DΓ (w
n+1) and

Φ ⊆ vn+1. Note that, by S5-reasoning, DΓ (w
n+1) ⊂ vn+1n entails DΓ (w

n+1) =
DΓ (v

n+1). This is so, because wn+1 is a MCS, whence, if DΓψ ∈ vn+1 \ wn+1,
then, DΓ¬DΓψ ∈ wn+1 follows by negative introspection from ¬DΓψ ∈ wn+1.
The latter entails DΓ¬DΓψ ∈ vn+1, which, by T, entails ¬DΓψ ∈ vn+1, and
this would contradict the consistency of vn+1. Hence we only need to prove that
Φ ⊆ vn+1. By the definition of the transition function t, this would follow from
the consistency of

⋃

i∈Γ
Φi ∪ {�θ : θ ∈ vn} ∪DΓ (w

n+1) ∪ Φ where Φi are the sets

of formulas occurring in b
n

vn,Γ . This boils down to the consistency of {�θ : θ ∈
vn} ∪ DΓ (w

n+1) ∪ Φ, because vn ∼Γ wn entails that an has the same effective
Γi ⊆ Γ wrt w as bn wrt vn, and therefore Φi, i ∈ Γ , are the same in anwn,Γ .

Hence, by the definition of wn+1 = t(wn, an) and D◦, ψ ∈
⋃

i∈Γ
Φi is equivalent

to DΓψ ∈ DΓ (w
n+1). Now let us assume that {�θ : θ ∈ vn} ∪DΓ (w

n+1) ∪ Φ is
inconsistent for the sake of contradiction. Then there exist some finitely many
θ1, . . . , θk ∈ vn such that DΓ (w

n+1)∪Φ �MP ◦¬(θ1∧ . . .∧θk). This is impossible
by the choice of vn to be a superset of Θ = {θ : DΓ (w

n+1) ∪ Φ �MP �θ}.
Lemma 8 (DΓ ). Let n < ω, r, r′ ∈ Rn(IS). Let r = w0a0 . . . an−1wn and
r′ = v0b0 . . . bn−1vn. Then r′ ∼Γ r implies ϕ ∈ vn.
Proof. By the definition of r′ ∼Γ r, DΓϕ ∈ DΓ (w

n) = DΓ (v
n) ⊆ vn, whence

ϕ ∈ vn follows by TD.

Lemma 9 (〈〈. | .〉〉◦). Let w ∈ W , Ψ ⊂ L and 〈〈Γ | Δ〉〉 ◦ ∧Ψ ′ ∈ w for all
finite Ψ ′ ⊆ Ψ . Let a′Γ = 〈〈{pi,〈〈Γ |Δ〉〉◦Ψ ′ ⇒ ∧

Ψ ′ : Ψ ′ ⊆fin Ψ}, {i}, ∅〉 : i ∈ Γ 〉
Then Ψ ⊆ t(w, a′Γ ∪ aw,Δ ∪ a′′Σe\(Γ∪Δ)), where aw,Δ is the restriction of aw as

introduced in Definition 19, for all a′′Σe\(Γ∪Δ) ∈ ActΣe\(Γ∪Δ).

Proof. Obviously Γ is effective in a′Γ ∪ aw,Δ ∪ a′′Σ\(Γ∪Δ) wrt w.

Lemma 10 ([[. | .]]◦). Let n < ω, r = w0a0 . . . an−1wn ∈ Rn(IS), Γ,Δ ⊆ Σ,
Γ ∩Δ = ∅. Let s = s0, . . . , sn ∈ (S(Σe))

n+1 be consistent with r. Let gΓ ∈ ActΓ
be such that ψ ∈ t(vn, gΓ ∪ s′n(vn)Δ ∪ g′Σe\(Γ∪Δ)) for all r′ = v0b0 . . . bn−1vn ∈
Rn(IS) such that r′ ∼Γ∪Δ r, all s′ ∈ (S(Σe))

n+1 which are consistent with r′ and
satisfy s′ ∼Γ∪Δ s, and all g′Σe\(Γ∪Δ) ∈ ActΣe\(Γ∪Δ). Then 〈〈Γ | Δ〉〉 ◦ ψ ∈ wn.

Proof. Consider an r′ as in the lemma. Let g′i = 〈∅, {i}, ∅〉 for i ∈ Σ\(Γ ∪Δ), Let
a = gΓ ∪ s′n(vn)Δ ∪ g′Σ\(Γ∪Δ) ∪ g′e. Let Φ be the union of all the sets of formulas
in awn , i.e., the actions of the coalitions which are effective in a wrt wn and,
consequently, wrt any vn which is Γ ∪Δ-similar to wn. Then, by the definition
of t, t(vn, a) = (Φ∪Θvn) + g′e. Assume that the least element of g′e is ¬ψ. Then,
since ψ ∈ t(vn, a) and by the construction of (Φ∪Θvn)+ g′e, Φ∪Θvn �MP ψ. By
compactness, there exists a finite Θ′

vn ⊂ Θvn such that Φ �MP

∧
Θvn ⇒ ψ. Let

Θ′
vn = {�θ1, . . . ,�θk}. Then

∧
Θ′
vn is equivalent to �(θ1 ∧ . . . ∧ θk). The latter
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formula is in Θvn . Hence, for every v
n which is the last state of an r′ as described

in the lemma, there exists a ξ ∈ L such that �ξ ∈ Θnv and Φ �MP �ξ ⇒ ψ. Let

Ξn = {ξ ∈ L : Φ �MP �ξ ⇒ ψ, �ξ ∈ Θvn for some vn ∈W such that
there exists an r′ ∈ R(IS), r′ ∼Γ∪Δ r with vn as its last state}.

A direct check shows that Ξn is closed under disjunction. Assume that {¬ξ : ξ ∈
Ξn}∪DΓ∪Δ(wn) is consistent for the sake of contradiction. Then, by Lemma 5,
DΓ∪Δ(wn) �MP PΓ∪Δ¬ξ for every ξ ∈ Ξn.

Since Ξn is closed under disjunction, we can conclude that DΓ∪Δ(wn) �MP

PΓ∪Δ
∧

ξ∈Ξn′
¬ξ for any finite Ξn′ ⊂ Ξn. By Lemma 7, this entails that there

exist an r′ ∼Γ∪Δ r and an s′ ∼Γ∪Δ s such that s′ is consistent with r′ and
{¬ξ : ξ ∈ Ξn} ⊆ vn where vn is the last state of r′. This contradicts the
consistency of vn since, as we established above, for every vn with the specified
properties, there exists a ξ ∈ Ξn such that ξ ∈ vn as well. Hence {¬ξ : ξ ∈
Ξn′} ∪DΓ∪Δ(wn) is inconsistent. By compactness, this entails that there exists
DΓ∪Δ(wn) �MP

∨
Ξn′ for some finite Ξn′ ⊂ Ξn. Now, having in mind that

Φ �MP �ξ ⇒ ψ for each of the ξs in Ξn′, we can conclude that Φ ∪ {�δ : δ ∈
DΓ∪Δ(wn)} �MP ψ. Hence there exist some finite Φ′ ⊆ Φ and D′ ⊂ DΓ∪Δ(wn)
such that � ∧

Φ′ ∧ �∧
D′ ⇒ ψ. By the monotonicity of 〈〈Γ | Δ〉〉◦, � 〈〈Γ |

Δ〉〉◦(∧Φ′∧�∧
D′)⇒ 〈〈Γ | Δ〉〉◦ψ. Now, by Axiom 〈〈. | .〉〉◦�, the latter entails

� 〈〈Γ | Δ〉〉◦ (∧Φ′)∧DΓ∪Δ
∧
D′ ⇒ 〈〈Γ | Δ〉〉◦ψ. For any vn as in the lemma, the

definition of Φ entails 〈〈Γ | Δ〉〉 ◦ (∧Φ′) ∈ vn, and D′ ⊂ DΓ∪Δ(wn) = DΓ∪Δ(vn)
entails

∧
D′ ∈ vn. Hence, finally, 〈〈Γ | Δ〉〉 ◦ ψ ∈ vn as well.

Lemma 11 (� and (.S.)). Let n, r ∈ Rn(IS) and s ∈ (S(Σe))
n+1 be as in

the previous lemmata. Then, ◦nI ∈ wn and, for any two formulas ϕ, ψ ∈ L,
�ϕ ∈ wn iff n > 0 and ϕ ∈ wn−1, and (ϕSψ) ∈ wn iff there exists a k ≤ n such
that ψ ∈ wk and ϕ ∈ wk+1, . . . , wn.

We omit the proof of this lemma as it contains nothing specific to ATLDPCiR . We
only note that the fact ◦nI ∈ wn guarantees that the presence of (.S.) does not
affect the compactness of the system, despite that (.S.) is an iterative operator.

Theorem 1 (truth lemma). Let n < ω, r ∈ Rn(IS), r = w0a0 . . . an−1wn,
and let s ∈ S(Σe)n+1 be consistent with r. Then IS, r |= ϕ iff ϕ ∈ wn.
Proof. Induction on the construction of ϕ. The cases of ϕ being ⊥, an atomic
proposition, or an implication, are trivial, and we skip them. For ϕ of the forms
DΓψ, 〈〈Γ | Δ〉〉 ◦ψ and �ψ and (ψSχ) the theorem follows from Lemmata 8 and
7, 9 and 10 and Lemma 11, respectively.

Corollary 1 (strong completeness for basic ATLDPCiR ). Let x be a consis-
tent subset of L and let I ∈ x. Then there exists an initial state l ∈ I and a
vector of strategies s ∈ S(Σe) such that IS, s, l |= ϕ for all ϕ ∈ x.
Proof. Let w be any MCS such that x ⊆ w. Then Theorem 1 entails that
IS, sIS , lw |= ϕ for all ϕ ∈ w.
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Concluding Remarks and Future Work

We have shown that extending the game-theoretic operator 〈〈.〉〉 of ATLDPiR by a
second coalition parameter to denote players who act according to the strategic
context, we obtain a language for epistemic ATL with strategic contexts which
admits an axiom system that is a straightforward revision of the system for
ATLDPiR from our work [9]. So far we have established the completeness of that
system for a subset of ATLDPiR with strategy contexts which lacks the combina-
tions of 〈〈.〉〉 with the iterative future temporal operator (.U.) and its derivatives
� and �. Taking advantage of the compactness of this subset, we have obtained
a strong completeness theorem. We have established the semantical compatibil-
ity between our proposed system and the systems of ATL with strategy contexts
and complete information from the literature, especially [5,15]. We intend to
further investigate the axiomatizability of ATLDPCiR , seeking to establish weak
completeness theorems and the decidability of validity of bigger subsets.
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